AIQRATE in 2020 ….A walk to remember
Home / Consulting / Global Capability Centres (GCCs) / AI Governance Framework For GCCs
AIQRATE in 2020 ….A walk to remember
- Nanda Ramaiah
- January 3, 2021
- Academic Institutions, Advisory, AI CoE Toolkits For Enterprises, AI CoE Toolkits For GCC, AI Experience Center Setup Framework, AI Experience Center Setup Framework, AI For CXOs & Senior Leaders, AI Governance Framework For GCCs, AI Interventions For Industry Segments & Business Functions, AI Interventions For Industry Segments And Business Functions, AI Masterclass For Enterprises, AI Masterclass For GCCs, AI Startup Innovation Roadshows, AI Strategic Partner Selection Framework, AI Strategic Partner Selection Framework, AI Talent Mapping Strategies, AI Talent Mapping Strategies, AI Workshops For Business Strategy Sessions, Analytics To AI Road-Mapping And Assessment, Building AI Powered Organizations, Chief AI Officer On Demand, Consulting, Enterprises, Global Capability Centres (GCCs), In the News, Public Sector Institutions & Business Associations, SMBs, Startups, Strategic AI Pitches For Internal & External Stakeholders, VC & PE Firms
“Enabling clients reimagine their decision making & accentuate the business performance with AI strategy in a transformation, innovation and disruption driven world”
In today’s fast paced & volatile VUCA world, leaders face unprecedented challenges. They need to navigate through volatility while staying focused on strategy, business performance and culture. Artificial Intelligence is fast becoming a game changing catalyst and a strategic differentiator and almost a panacea to solve large, complex and unresolved problems. To be an AI powered organization, leaders not only need to have a broad understanding of AI strategy, they need to know how and where to use it. AIQRATE advisory services and consulting offerings are designed to enable leaders and decision makers from Enterprises, GCCs, Cloud Providers, Technology players, Startups, SMBs, VC/PE firms, Public Institutions and Academic Institutions to become AI ready and reduce the risk associated with curating, deploying AI strategy and ensuing interventions and increase the predictability of a durable leader’s success.
In the age of the bionic enterprises, AI continues to dominate the technology & business landscape. Under the aegis of transformation, disruption and innovation, AI has several applications and impact areas which usher a new change in how we make decisions in the enterprise and personal spheres. Traditionally, human decisions are to a large extent based on intuition, gut and historical data. In the age of AI, several of our decisions will be taken by algorithms. Leveraging AI, the ability to mimic the human brain and the ensuing ability to sense, comprehend and act will significantly go up and will result in emergence of augmented intelligence in decision making. Enterprises, GCCs, SMBs, Startups and Government Institutions are attempting to harness the power of AI to change the way they do business. All these industry segments are looking at AI becoming the secret sauce behind making them gain a competitive advantage. If you have not started yet, you are already behind the competition, however large or pedigreed you might be.
So, where are you placed on your AI journey? At AIQRATE, we can guide you on your journey of understanding what AI can do for you, embedding it within your business strategy, functional areas and augmenting the decision-making process.
At AIQRATE, we are here to help you with the art of the possible with AI. Through our bespoke AI strategy frameworks, methodologies, toolkits, playbooks and assessments, we will bring seamless Transformation, Innovation and Disruption to your businesses. Leveraging our proven repository of consulting templates and artifacts, we will curate your AI strategic approach roadmap. Our advisory offerings and consulting engagements are designed in alignment with your strategic growth, vision and competitive scenarios.
We are at an inflection point where AI will revolutionize the way we do business. The paradigms of customer, products, offerings, services and competition will change dramatically; and being AI-ready will become a true differentiator. AIQRATE will be your strategic partner to help you to prepare for what’s next in order to stay relevant.
Enclosing here our journey walk through of 2020.
Wish you a great 2021!
Best,
Sameer Dhanrajani
Chief Executive Officer
AIQRATE
Bangalore , India
Related Posts
AI led Algorithms can decide on how we need to emote, behave, react, transact or interact with an individual – Sameer with SCIKEY
Home / Consulting / Global Capability Centres (GCCs) / AI Governance Framework For GCCs
AI led Algorithms can decide on how we need to emote, behave, react, transact or interact with an individual – Sameer with SCIKEY
- Nanda Ramaiah
- December 16, 2020
- Academic Institutions, Advisory, AI CoE Toolkits For Enterprises, AI CoE Toolkits For GCC, AI Experience Center Setup Framework, AI Experience Center Setup Framework, AI For CXOs & Senior Leaders, AI Governance Framework For GCCs, AI Interventions For Industry Segments & Business Functions, AI Interventions For Industry Segments And Business Functions, AI Masterclass For Enterprises, AI Masterclass For GCCs, AI Startup Innovation Roadshows, AI Strategic Partner Selection Framework, AI Strategic Partner Selection Framework, AI Talent Mapping Strategies, AI Talent Mapping Strategies, AI Workshops For Business Strategy Sessions, Analytics To AI Road-Mapping And Assessment, Building AI Powered Organizations, Chief AI Officer On Demand, Consulting, Enterprises, Global Capability Centres (GCCs), In the News, Public Sector Institutions & Business Associations, SMBs, Startups, Strategic AI Pitches For Internal & External Stakeholders, VC & PE Firms
In an exclusive interaction with SCIKEY, Sameer Dhanrajani, CEO at AIQRATE Advisory & Consulting, speaks about how the future of work will look like enabled by AI, and it’s contribution in building productive teams and the emerging AI trends to watch out for in Post COVID scenario.
“AI led algorithms can decide on how we need to emote, behave, react, transact or interact with an individual,” Sameer Dhanranjani
Sameer is a globally recognized AI advisor, business builder, evangelist and thought leader known for his deep knowledge, strategic consulting approaches in AI space. Sameer has consulted with several Fortune 500 global enterprises, Indian corporations , GCCs, startups , SMBs, VC/PE firms, Academic Institutions in driving AI led strategic transformation and innovation strategies. Sameer is a renowned author, columnist, blogger and four times Tedx speaker. He is an author of bestselling book – AI and Analytics: accelerating business decisions.
In an exclusive interaction with SCIKEY, Sameer Dhanranjani, CEO at AIQRATE advisory consulting, speaks about how the future of work will look like enabled by AI, and it’s contribution in building productive teams and the emerging AI trends to watch out for in Post COVID scenario.
Mr Dhanranjani, you have consulted with several Fortune 500 enterprises, GCCs also start-ups in driving AI-led strategic transformation strategies. What according to you, are the topmost strategic considerations to weigh for managing accelerating business in Post COVID world for a start-up?
The unprecedented times of COVID-19 have brought the aspect of decision making under consideration. This includes tactical, strategic, and operational decision making that is crucial to make the venture more sustainable. Today the use of artificial intelligence is quite high amongst organizations. It can be used by start-up ventures and other outfits to make decisions irrespective of the area that needs decision making.
Most decisions that need to be made strategically are being passed on to artificial intelligence-enabled interventions. The algorithm makes similar decisions based on the previous decisions taken. Algorithms can decide how we need to emote, behave, react, transact or interact with the opposite individual This advancement in AI brings the challenge for organizations to create products and services specific to each customer through hyper-personalization and micro-segmenting. However, it can also be considered as an opportunity for organizations to emerge from the pandemic with newer business models and experiences for customers. Start-ups, especially, can make use of such advancements to reinvent and rejuvenate the organizational ecosystem.
You are known for your passion for Artificial Intelligence and are an author to the bestselling book – AI and Analytics: Accelerating Business Decisions. Tell us where how can AI be strategically significant while building productive teams.
My experience has led me to deal with engagements in the entire value chain of HR, ranging from hiring to engagement to incentivization that has leveraged using AI. It is phenomenal to see how AI can help build, engage, and sustain productive teams. AI can help in hiring through the detection emotions, facial expressions, tone modulations of the interviewee through computer vision and image classification techniques.
In the creation of productive teams, AI can gauge the engagement levels of an employee. It tries to look at the various interventions made by an employee regarding their attendance, participation in virtual meetings, and propensity to ask and engage themselves in conversations. It also keeps in check the number of pauses, intervals, and breaks taken by an employee. Every aspect of the employee is being marked to see how productive, inclusive, as an individual and in teams.
What are the top 5 AI trends to watch out for in Post COVID the scenario of the next one year?
When it comes to AI, the first trend emerging is that AI is not a tool or a technology, but it is now being touted as a strategic imperative for any organization. This means that AI strategies will become an intrinsic part and feature of every organisation.
The second trend is the democratization of AI. There is a possibility of the emergence of an AI marketplace where virtual exchanges related to business problems, demo runs etc. can be conducted. One would actually be able to figure out which algorithm is best for them in customer experience, supply chain etc.
The third trend being the cloud will act as a catalyst for AI proliferation. The propensity for cloud providers to enable AI companies with possible aspects of microservice API’s, Product Solutions will be created on the go. This means that the cloud enablers will have options to see various possibilities specific to their organisation when it comes to AI-specific use cases.
The fourth trend is linked to skilling. AI today is a part of a lot of course curriculums. But what is missing is the whole aspect of how does it get applied? The new courseware will be focused on how is AI implemented, adopted in the organization.
The last fifth trend is decision-making enabled by AI, which means humans will have no option but to upskill and reskill themselves to take a more rational, pragmatic and sanguine approach. So new models, new emerging realities of decision making will emerge.
How is AI powering the Future of Work, what are critical considerations for business and tech leaders considering the rapidly changing business dynamics due to COVID?
The future of work will be about AI and what we call AI plus a set of exponential technologies. This means that every aspect of our performance interaction and our responses will be gauged very manually through these technologies. This indicates that the level of performances in terms of how we go up-to-date needs to be worked upon. The future of work is an ecosystem where one particular employer cannot do it all.
This means that if learning must occur through an external player, it must come through the ecosystem of co-employees and the employer. In the future, we will not be caged as mere professionals doing our job but will be encouraged to push our boundaries to explore more at work. At the same time, transformation, innovation, and disruption will be a part of the future’s performance metrics. They will become a major parameter for the organization to create a mediocre versus proficient employee or a professional. This is where the onus will fall on the employees to ensure that they are not just doing what is being called out, but are going beyond to create what we call a value creation for the organisation.
About SCIKEY:
SCIKEY Market Network is a Digital Marketplace for Jobs, Work Business solutions, supported by a Professional Network and an integrated Services Ecosystem. It enables enterprises, businesses, job seekers, freelancers, and gig workers around the world. With its online events, learning certifications, assessments, ranking awards, content promotion tools, SaaS solutions for business, a global consulting ecosystem, and more, companies can get the best deals in one place.
‘SCIKEY Assured,’ a premium managed services offering by SCIKEY, delivers the best outcomes to enterprise customers globally for talent and technology solutions getting delivered offshore, remotely, or on-premise. We are super-proud to be working with some of the world’s most iconic Fortune1000 brands.
Better Work. Better Business. Better Life. Better World.
Related Posts
Bring in Effective Data Norms
Home / Consulting / Global Capability Centres (GCCs) / AI Governance Framework For GCCs
Bring in Effective Data Norms
What constitutes ‘fair use’ of data is increasingly coming under scrutiny by regulators across the world. With the digital detonation that has been unleashed in the past few years, leading to a deluge of data – organisations globally have jumped at the prospect of achieving competitive advantage through more refined data mining methods. In the race for mining every bit of data possible and using it to inform and improve algorithmic models, we have lost sight of what data we should be collecting and processing. There also seems to be a deficit of attention to what constitutes a breach and how offending parties should be identified and prosecuted for unfair use.
There’s growing rhetoric that all these questions be astutely addressed through a regulation of some form. With examples of detrimental use of data surfacing regularly, businesses, individuals and society at large are demanding an answer for exactly what data can be collected – and how it should be aggregated, stored, managed and processed.
If data is indeed the new oil, we need to have a strong understanding of what constitutes the fair use of this invaluable resource. This article attempts to highlight India’s stance on triggering regulatory measures to govern the use of data.Importance of Data Governance
Importance of Data Governance
Before we try to get into what data governance should mean in the Indian context, let us first look at the definition of data governance and why it is an important field of study to wrap our head around.
In simple terms, data governance is the framework that lays down the strategy of how data is used and managed within an organisation. Data governance leaders must stay abreast of the legal and regulatory frameworks specific to the geographies that they operate in and ensure that their organisations are compliant with the rules and regulations. A lot of their effort at present is aimed at maintaining the sanctity of organisational data and ensuring that it does not fall in the wrong hands. As such, the amount of time and effort expended on ensuring that these norms are adequately adhered to is contingent upon the risk associated with a potential breach or loss of data.
In effect, a framework of data governance is intended to ensure that a certain set of rules is applied and enforced to ensure that data is used in the right perspective within an organisation.
Data Governance in Indian Context
India is rapidly moving towards digitisation. Internet connectivity has exploded in the last few years, leading to rapid adoption of internet-enabled applications — social media, online shopping, digital wallets etc. The result of this increasing connectivity and adoption is a fast-growing digital footprint of Indian citizens. Add to this the Aadhaar programme proliferation and adoption – and we have almost every citizen that has personal digital footprint somewhere – codified in the form of data.
With a footprint of this magnitude, there is an element of risk attached. What if this data falls in the wrong hands? What if personal data is used to manipulate citizens? What are the protection mechanisms citizens have against potential overreach by stewards of the data themselves? It is time we found answers to these very pertinent questions – and data governance regulation is the way we will find comprehensive answers to these impending conversations
Perspectives for India
The pertinent departments are mulling over on a collective stand that should be taken while formulating data governance norms. For one, Indian citizens are protected by a recent Supreme Court ruling that privacy is a fundamental right. This has led to a heightened sense of urgency around arriving at a legislative framework for addressing genuine concerns around data protection and privacy, as well as cybersecurity.
As a result of these concerns, the Central government recently set up a committee of experts, led by Justice BN Srikrishna, tasked with formulating data governance norms. This committee is expected to maintain the delicate balance between protecting the privacy of citizens and fostering the growth of the digital economy simultaneously. Their initial work – legal deliberations and benchmarking activity against similar legal frameworks such as GDPR (General Data Protection Regulation) – has resulted in the identification of seven key principles around which any data protection framework needs to be built. Three of the most crucial pointers include:
1. Informed Consent: Consent is deemed to be an expression of human autonomy. While collecting personal data, it is critical that the users be informed adequately about the implications around how this data is intended to be used before capturing their express consent to provide this data
2. Data Minimisation: Data should not be collected indiscriminately. Data collected should be minimal and necessary for purposes for which the data is sought and other compatible purposes beneficial for the data subject.
3. Structured Enforcement: Enforcement of the data protection framework must be by a high-powered statutory authority with sufficient capacity. Without statutory authority, any remedial measures sought by citizens over data privacy infringement will be meaningless.
Striking the right balance between fostering an environment in which the digital economy can grow to its full potential, whilst protecting the rights of citizens is extremely difficult.
With a multitude of malafide parties today seeking to leverage personal data of citizens for malicious purposes, it is crucial that the government and the legal system set out a framework that protects the sovereignty and interests of the people. By allaying fears of misuse of data, the digital economy will grow as people become less fearful and more enthusiastically contribute information where a meaningful end outcome can be achieved.
Related Posts
Envisioning the future of work in the AI era
Home / Consulting / Global Capability Centres (GCCs) / AI Governance Framework For GCCs
Envisioning the future of work in the AI era
The age of Artificial Intelligence is upon us. Businesses and society are now looking towards AI for transformative outcomes. Businesses specifically are investing huge amounts of money on AI technology that will not only bring in efficiencies across multiple processes, but also unlock new revenue streams that will deliver quantum bottom-line impact. With the AI transformation playing out rapidly in our personal and professional lives, we need to deeply understand what the future of work will look like in the age of AI.
Within the business organization, there is a huge need to ramp up skill development interventions. The traditional roles of employees in an organization are rapidly changing as they are expected to stay in step with the developments in the world of AI. Business executives are now needed to deeply understand the potential of Artificial Intelligence and translate it into a viable roadmap for their business. Technology leaders need to take centre-stage in how their organizations adopt and harness the power of AI. The CIO is now fast becoming the key custodian of the most valuable resource in business today i.e. data. We are seeing a fast proliferation of digital evangelists and transformation officers who are charged with developing a framework within which the future of the organization will operate.
Ushering the Future of Work
On a tactical level, the burning question now is how subjects such as Data Science, Artificial Intelligence and Machine Learning can be infused in the career pathways of existing employees. How can organizations can build a steady pipeline of future talents with expertise in AI? Mastery of exponential technologies (AI, cloud computing, blockchain, IOT, cybersecurity etc.) will be remarkably important for both business and technical professionals. It is critical that transformation leaders and digital evangelists are well-versed in building internal capabilities that converge around the nexus of technology competencies, managing a hybrid workforce and ensuring the adoption and dispersion of AI.
For us to usher in the future of work powered by Artificial Intelligence, we need to ensure that a few key enablers come together. We need to expand the scope of executive education and the courseware that goes with it. Next, we need to seriously consider the potential impact of shorter, tactical courses. Corporations need to augment their training programs with shorter, time-boxed courseware that can deliver instant impact for the organization. Finally, we need to reimagine multiple, personalized career pathways. We need to move away from the traditional one-size-fits-all training and deliver more tailored, fit-for-purpose and relevant education to employees. Here are the three critical interventions for the business and technology leaders to execute in order to usher in the future of work that is enabled by AI.
1.Develop New Age Skills and Competencies in AI Technology
Upgrading the technology competencies and skills of business and technology leaders and their teams seems like the most critical first step. With the landscape of technology is rapidly evolving, we need to urgently upskill the present and future workforce to ensure a quality supply of talent. We need new age coursework in computer science that can hugely develop the ability of students in subjects such as Artificial Intelligence Machine Learning, Deep Learning, Natural Language Processing and other AI related concepts. On a broader scale, we also need Universities and colleges to improve the existing knowledge-base of AI enabling technologies such as Cloud, DevOps, Blockchain etc as well for the workforce.
At present we see a decent level of advancement in the field of computer science training and education. However, other trades within the technical area which also require to be upgraded as well. By doing so, we will be able to ensure a wholesome and future-proof education for the aspirants who wish to build their careers in the world of AI. For instance, students studying for a major in the field of electronics could shape their focus on mastering AI-enabling technologies such as GPUs and Quantum Computing. The students presently pursuing a specialization in mechanical engineering could achieve some level of sophistication in allied subjects of robotics and 3D Printing. Subject matter experts in the fields of industrial engineering, operations and supply chain would also do well to extend their skill sets to machine learning and blockchain as well thus creating a convergence of their interest areas and realities of the market – which will empower them with the required tools to succeed in the workplace of the future.
2. Reimagining the Process of Developing of New Age Technology
This interventions pertains to the embedding the design in the process of development and user adoption of AI technology. A commonly held misconception around design of a product or software is that it is restricted to simply the look or feel of the product or software. This is simply not true. As a Steve Jobs once proclaimed – Design is not just what is looks like and feels like. Design is how it works.
For the growth of AI to live up to the hype, we need to reimagine the process by which we develop new age technology. We need to build design into the fabric of the development and engagement process to ensure that the conceived idea is brought to fruition. Transformation evangelists aiming to spearhead the future of work should treat design as the creative process that aids the development of breakthrough products.
We are already seeing several inroads that design frameworks such as Human Centered Design and Empathy-led Design are making in the technology realm. These frameworks not only guide the development process, but also the user experience of the final software / hardware being developed. These frameworks do so by putting the user at the center of the journey.
3.Managing the ‘People’ of the Future Workforce
As I mentioned before the understanding of traditional roles in the future of work is rapidly changing. New roles are also emerging where data custodians and algorithm at scale engineers are put to work to develop the technology that powers the business of the future. On the macro level, we are seeing rapid changes in the paradigm of staffing as well. With the gig economy in full force, we are seeing more dynamic team compositions – where individuals with varied skill sets are required to continuously augment teams on a need basis. Advances in the fields of technology and management typically ordain large-scale transformation in the manner in which organizations manage their workforce.
On the micro level we are seeing that increased instances of automation are requiring managers to build and scale blended teams comprising humans and AI. This disruption requires a paradigm shift how the future workforce is managed. Teams in the future will showcase increased diversity and will be more interdisciplinary than ever before. Managing teams, careers and coaching for improved performance in the future will require a new set of metrics. Change evangelists need to devise these metrics – which will be imperative to how the workforce of the future is managed.
New technologies will require new approaches to project management and staffing. To ensure the supply of these critical skills, we also need courses that provide an education of subjects such as people management.
Our very understanding of our workplace is being rapidly disrupted. Increasingly a convergence of the right people, process and technology is required to unearth insights from a seemingly exponentially increasing size of data. To turn this data into actionable intelligence that powers business processes must be the focus of business and technology leaders – as well as educationists that build the talent pipeline for the future. Academia is required to urgently intervene and provide theoretical and practical training in AI subjects to both the existing workforce and the future pipeline of talent. We also need a dispersion of soft skills that will enable and evangelize this change. With growing interest and appreciation of technologies and platforms around Artificial Intelligence and the Digital Workplace, organizations need to ask tough questions of themselves. The time is now to consider the various forces at play. With increased AI augmentation and the transformation of processes and people that enable it, the topic of the Future of Work requires immediate and urgent attention.
Related Posts
Redesigning exponential technologies landscape with AI & Blockchain fusion
Home / Consulting / Global Capability Centres (GCCs) / AI Governance Framework For GCCs
Redesigning exponential technologies landscape with AI & Blockchain fusion
AI and blockchain are two of the prime drivers in the technology space that catalyze the pace of innovation and demonstrating radical shifts across every industry. Each of this technical venture comes with a degree of technical complexity and business implications. Fusion of the two will be able to redesign the entire technical landscape along with a human effect from scratch.
Blockchain has its own limitations, it is a mix of technology-related and culture influence from the financial services sector, but most of them can be conceited by AI in a way or another.
The illustrated points below will be able to give a gist of the potentials that can be realized at the intersection of AI and Blockchain:
Energy consumption in mining: Mining has already proven that it requires tons of energy and is heavy in the economic perspective. AI has mastered in optimizing energy consumption across multiple sectors, similar results can be expected for the blockchain as well. AI can dramatically reduce the costs of maintaining servers and validate potential savings to lower investments in mining hardware.
Federated Learning: Blockchain is growing at a steady pace of 1MB every 10 minutes. Blockchain pruning is a possible solution through AI. A new decentralized learning system such as federated learning, for example, or new data sharing techniques to make the system more efficient.
Security: Concerns still exist on the security system of built-in layers and applications for Blockchain (e.g., the DAO, Bitfinex, etc.). The mileage created by machine learning in the last two years makes AI a solid candidate for the blockchain to guarantee secure applications deployment, especially given the fixed structure of the system.
Blockchain-AI Data gates: Blockchain has proven its ability for record keeping, authentication, and execution while AI drives decisions by assessing/understanding patterns and datasets, ultimately engendering autonomous interaction. The combo (AI and blockchain) will be become a data gate with these several characteristics that will ensure a seamless interaction in the nearest future.
Auditing of AI through blockchain: AI is seen as a black box ( complex set of calculations and algorithms) to distinguish patterns or trends. This makes it a difficult task for the humans to govern the choices taken by the artificial intelligence in yielding results. Accountability of the AI black box is seen as biggest challenge, considering concerns across the community for tampering or the altering happening to the calculations for the given input which eventually reflects in the output generated. This challenge can be easily comprehended by the blockchain innovation. Implementing robust auditing of these calculations utilizing the blockchain is seen as the biggest driver for enhancing the credibility of the business organizations and reinstating trust in the reliability of the information.
Leverage on Artificial Trust: Future roadmap of this fusion can successfully lead into creation of virtual agents that will create new ledger by themselves. Machine to machine interaction will be the new norm reinstating trust in a secure way to share data and coordinate decisions, as well as a robust mechanism to reach a quorum.
Machine performance monitoring and changes: Blockchain miners (companies and individuals) pour an incredible amount of money into specialized hardware components. AI can complement such as machine/equipment monitoring to deploy more efficient systems and do away with the unproductive heavy ones.
Blockchain for better information management: AI has a proven mechanism that runs of an incorporated or centralized database. In such a case, there are always chances for information occurrence of a mishap, i.e. gets lost, altered, or undermined.
Blockchain and artificial intelligence fusion can eliminate the above concern. Under the umbrella of blockchain the data is decentralized and stored within different nodes or systems. This reinstates trust on that your information is safe and unaltered. Most importantly the information is time-stamped and is in the sequence making recuperation less demanding and exact.
Some key challenges on the block: The fusion throws open technical and ethical implications arising from the interaction between these two technologies, such as the need to edit data on a blockchain and most importantly the duo pushing to become data hoarder. Experimentations alone will be able to provide a detailed answer on these lines.
In conclusion blockchain and AI are the two sides of the technology spectrum. One efficiently fosters centralized intelligence while the other promotes decentralized applications in an open-data environment. The fusion of the two will be an intelligent way to amplify positive externalities and advance mankind, most importantly reap the maximum potential for business needs.
Related Posts
Beating Back Cyber Attacks with Analytics – A Topical Perspective
Home / Consulting / Global Capability Centres (GCCs) / AI Governance Framework For GCCs
Beating Back Cyber Attacks with Analytics – A Topical Perspective
The worldwide cyber attack that began last Friday and goes by the name of “WannaCry” has highlighted the need for governments and businesses to strengthen their security infrastructure, in addition to calling attention to the need to mandate security updates and educate lawmakers about the intricacies of cyber security.
During the WannaCry attacks, hospitals had to turn away patients, and their ability to provide care was altered significantly. Even though the threat is widely acknowledged to be real by the information security community and anyone not living under a rock, and the stakes are higher than ever, most organizations and almost all healthcare providers are still using old-school cybersecurity technologies and retain their reactive security postures.
The WannaCry ransomware attack moved too quickly for security teams to respond, but a few organizations were able to spot the early indicators of the ransomware and contain it before the infection spread across their networks. While it wreaked havoc across the globe, there was nothing subtle about it. All of the signs of highly abnormal behavior on the networks were there, but the pace of the attack was far beyond the capacity of human teams contain it. The latest generation of AI technology enabled those few organizations to defend their networks at the first sign of threat.
Meanwhile, threats of similar – or perhaps worse – attacks have continued to surface. This was not the big one. This was a precursor of a far worse attack that will inevitably strike — and it is likely, unfortunately, that [the next] attack will not have a kill switch. This is an urgent call for action for all of us to get the fundamentals finally in place to enable us to withstand robustly this type of a crisis situation when the next one hits.
Modern malware is now almost exclusively polymorphic and designed in such a way as to spread immediately upon intrusion into a network, infecting every sub-net and system it encounters in near real-time speed. Effective defense systems have to be able to respond to these threats in real time and take on an active reconnaissance posture to seek out these attacks during the infiltration phase. We now have defense systems that have applied artificial intelligence and advanced machine learning techniques and are able to detect and eradicate these new forms of malware before they become fully capable of executing a breach, but their adoption has not matched the early expectations.
As of today, the vast majority of businesses and institutions have not adopted nor installed these systems and they remain at high risk. The risk is exacerbated further by targets that are increasingly involved with life or death outcomes like hospitals and medical centers. All of the new forms of ransomware and extortionware will increasingly be aimed at high-leverage opportunities like insulin pumps, defibrillators, drug delivery systems and operating room robotics.
Network behavioral analytics that leverage artificial intelligence can stop malware like WannaCry and all of its strains before it can form into a breach. And new strains are coming. In fact, by the time this is published, it would not surprise me to see a similar attack in the headlines.
Aanlytics is Turning the Table on Security Threats
The more comprehensive, sensitive and greater volume of end user and customer data you store, the more tempting you are to someone wanting to do harm. That said, the same data attracting the threat can be used to thwart an attack. Analytics includes all events, activities, actions, and occurrences associated with a threat or attack:
- User: authentication and access location, access date and time, user profiles, privileges, roles, travel and business itineraries, activity behaviors, normal working hours, typical data accessed, application usage
- Device: type, software revision, security certificates, protocols
- Network: locations, destinations, date and time, new and non-standard ports, code installation, log data, activity and bandwidth
- Customer: customer database, credit/debit card numbers, purchase histories, authentication, addresses, personal data
- Content: documents, files, email, application availability, intellectual property
The more log data you amass, the greater the opportunity to detect, diagnose and protect an organization from cyber-attacks by identifying anomalies within the data and correlating them to other events falling outside of expected behaviors, indicating a potential security breach. The challenge lies in analyzing large amounts of data to uncover unexpected patterns in a timely manner. That’s where analytics comes into play.
Leveraging Data Science & Analytics to Catch a Thief
Using data science, organizations can exercise real-time monitoring of network and user behaviors, identifying suspicious activity as it occurs. Organizations can model various network, user, application and service profiles to create intelligence-driven security measures capable of quickly identifying anomalies and correlating events indicating a threat or attack:
- Traffic anomalies to, from or between data warehouses
- Suspicious activity in high value or sensitive resources of your data network
- Suspicious user behaviors such as varied access times, levels, location, information queries and destinations
- Newly installed software or different protocols used to access sensitive information
- Identify ports used to aggregate traffic for external offload of data
- Unauthorized or dated devices accessing a network
- Suspicious customer transactions
Analytics can be highly effective in identifying an attack not quite underway or recommending an action to counter an attack, thus minimizing or eliminating losses. Analytics makes use of large sets of data with timely analysis of disparate events to thwart both the smallest and largest scale attacks.
The Analytics Solution to Security Monitoring
If security monitoring is a data storage problem, then it requires a analytics solution capable of analyzing large amounts of data in real time. The natural place to look for that solution is within Apache Hadoop, and the ecosystem of dependent technologies. But although Hadoop does a good job performing analytics on large amounts of data, it was developed to provide batch analysis, not real-time streaming analytics required to detect security threats.
In contrast, the solution for real-time streaming analytics is Apache Storm, a free and open source real-time computation system. Storm functions similar to Hadoop, but was developed for real-time analytics. Storm is fast and scalable, supporting not only real-time analytics but machine learning as well, necessary to reduce the number of false positives found in security monitoring. Storm is commonly found in cloud solutions supporting antivirus programs, where large amounts of data is analyzed to identify threats, supporting quick data processing and anomaly detection.
The key is real-time analysis. Big data contains the activities and events signaling a potential threat, but it takes real-time analytics to make it an effective security tool, and the statistical analysis of data science tools to prevent security breaches.
When do you need to start? – Yesterday
Yesterday would have been a good time for companies and institutions to arm themselves against this pandemic. Tomorrow will be too late.
Related Posts
Ethics and Ethos in Analytics – Why is it Imperative for Enterprises to Keep Winning the Trust from Customers?
Home / Consulting / Global Capability Centres (GCCs) / AI Governance Framework For GCCs
Ethics and Ethos in Analytics – Why is it Imperative for Enterprises to Keep Winning the Trust from Customers?
Data Sciences and analytics technology can reap huge benefits to both individuals and organizations – bringing personalized service, detection of fraud and abuse, efficient use of resources and prevention of failure or accident. So why are there questions being raised about the ethics of analytics, and its superset, Data Sciences?
Ethical Business Processes in Analytics Industry
At its core, an organization is “just people” and so are its customers and stakeholders. It will be individuals who choose what to organization does or does not do and individuals who will judge its appropriateness. As an individual, our perspective is formed from our experience and the opinions of those we respect. Not surprisingly, different people will have different opinions on what is appropriate use of Data Sciences and analytics technology particularly – so who decides which is “right”? Customers and stakeholders may have different opinions on to the organization about what is ethical.
This suggests that organizations should be thoughtful in their use of this Analytics; consulting widely and forming policies that record the decisions and conclusions they have come to. They will consider the wider implications of their activities including:
Context – For what purpose was the data originally surrendered? For what purpose is the data now being used? How far removed from the original context is its new use? Is this appropriate?
Consent & Choice – What are the choices given to an affected party? Do they know they are making a choice? Do they really understand what they are agreeing to? Do they really have an opportunity to decline? What alternatives are offered?
Reasonable – Is the depth and breadth of the data used and the relationships derived reasonable for the application it is used for?
Substantiated – Are the sources of data used appropriate, authoritative, complete and timely for the application?
Owned – Who owns the resulting insight? What are their responsibilities towards it in terms of its protection and the obligation to act?
Fair – How equitable are the results of the application to all parties? Is everyone properly compensated? Considered – What are the consequences of the data collection and analysis?
Access – What access to data is given to the data subject?
Accountable – How are mistakes and unintended consequences detected and repaired? Can the interested parties check the results that affect them?
Together these facets are called the ethical awareness framework. This framework was developed by the UK and Ireland Technical Consultancy Group (TCG) to help people to develop ethical policies for their use of analytics and Data Sciences. Examples of good and bad practices are emerging in the industry and in time they will guide regulation and legislation. The choices we make, as practitioners will ultimately determine the level of legislation imposed around the technology and our subsequent freedom to pioneer in this exciting emerging technical area.
Designing Digital Business for Transparency and Trust
With the explosion of digital technologies, companies are sweeping up vast quantities of data about consumers’ activities, both online and off. Feeding this trend are new smart, connected products—from fitness trackers to home systems—that gather and transmit detailed information.
Though some companies are open about their data practices, most prefer to keep consumers in the dark, choose control over sharing, and ask for forgiveness rather than permission. It’s also not unusual for companies to quietly collect personal data they have no immediate use for, reasoning that it might be valuable someday.
In a future in which customer data will be a growing source of competitive advantage, gaining consumers’ confidence will be key. Companies that are transparent about the information they gather, give customers control of their personal data, and offer fair value in return for it will be trusted and will earn ongoing and even expanded access. Those that conceal how they use personal data and fail to provide value for it stand to lose customers’ goodwill—and their business.
At the same time, consumers appreciate that data sharing can lead to products and services that make their lives easier and more entertaining, educate them, and save them money. Neither companies nor their customers want to turn back the clock on these technologies—and indeed the development and adoption of products that leverage personal data continue to soar. The consultancy Gartner estimates that nearly 5 billion connected “things” will be in use in 2015—up 30% from 2014—and that the number will quintuple by 2020.
Resolving this tension will require companies and policy makers to move the data privacy discussion beyond advertising use and the simplistic notion that aggressive data collection is bad. We believe the answer is more nuanced guidance—specifically, guidelines that align the interests of companies and their customers, and ensure that both parties benefit from personal data collection
Understanding the “Privacy Sensitiveness” of Customer Data
Keeping track of the “privacy sensitiveness” of customer data is also crucial as data and its privacy are not perfectly black and white. Some forms of data tend to be more crucial for customers to protect and maintained private. To see how much consumers valued their data , a conjoint analysis was performed to determine what amount survey participants would be willing to pay to protect different types of information. Though the value assigned varied widely among individuals, we are able to determine, in effect, a median, by country, for each data type.
The responses revealed significant differences from country to country and from one type of data to another. Germans, for instance, place the most value on their personal data, and Chinese and Indians the least, with British and American respondents falling in the middle. Government identification, health, and credit card information tended to be the most highly valued across countries, and location and demographic information among the least.
This spectrum doesn’t represents a “maturity model,” in which attitudes in a country predictably shift in a given direction over time (say, from less privacy conscious to more). Rather, our findings reflect fundamental dissimilarities among cultures. The cultures of India and China, for example, are considered more hierarchical and collectivist, while Germany, the United States, and the United Kingdom are more individualistic, which may account for their citizens’ stronger feelings about personal information.
Adopting Data Aggregation Paradigm for Protecting Privacy
If companies want to protect their users and data they need to be sure to only collect what’s truly necessary. An abundance of data doesn’t necessarily mean that there is an abundance of useable data. Keeping data collection concise and deliberate is key. Relevant data must be held in high regard in order to protect privacy.
It’s also important to keep data aggregated in order to protect privacy and instill transparency. Algorithms are currently being used for everything from machine thinking and autonomous cars, to data science and predictive analytics. The algorithms used for data collection allow companies to see very specific patterns and behavior in consumers all while keeping their identities safe.
One way companies can harness this power while heeding privacy worries is to aggregate their data…if the data shows 50 people following a particular shopping pattern, stop there and act on that data rather than mining further and potentially exposing individual behavior.
Things are getting very interesting…Google, Facebook, Amazon, and Microsoft take the most private information and also have the most responsibility. Because they understand data so well, companies like Google typically have the strongest parameters in place for analyzing and protecting the data they collect.
Finally, Analyze the Analysts
Analytics will increasingly play a significant role in the integrated and global industries today, where individual decisions of analytics professionals may impact the decision making at the highest levels unimagined years ago. There’s a substantial risk at hand in case of a wrong, misjudged model / analysis / statistics that can jeopardize the proper functioning of an organization.
Instruction, rules and supervisions are essential but that alone cannot prevent lapses. Given all this, it is imperative that Ethics should be deeply ingrained in the analytics curriculum today. I believe, that some of the tenets of this code of ethics and standards in analytics and data science should be:
- These ethical benchmarks should be regardless of job title, cultural differences, or local laws.
- Places integrity of analytics profession above own interests
- Maintains governance & standards mechanism that data scientists adhere to
- Maintain and develop professional competence
- Top managers create a strong culture of analytics ethics at their firms, which must filter throughout their entire analytics organization